

Installation, Operation, and Maintenance Manual

RECEIVING AND INSPECTION

Upon receiving unit, check for any interior and exterior damage, and if found, report it immediately to the carrier. Also check that all accessory items are accounted for and are damage free.

WARNING!!

Installation of this module should only be performed by a qualified professional who has read and understands these instructions and is familiar with proper safety precautions. Improper installation poses serious risk of injury due to electric shock and other potential hazards. Read this manual thoroughly before installing or servicing this equipment. ALWAYS disconnect power prior to working on module.

Save these instructions. This document is the property of the owner of this equipment and is required for future maintenance. Leave this document with the owner when installation or service is complete.

TABLE OF CONTENTS

WARRANTY	4
INSTALLATION	5
Mechanical	5
Plumbing Connections for Self Cleaning	5
Piping Loss Calculation for Wall Mount Self Cleaning System	
Pressure Loss Through Typical Water Pipe Chart	7
Self Cleaning System Overview	
Drain Assembly	12
Electrical	13
Copper Wire Ampacity	13
OPERATION	14
Start Up	14
Special Tools Required	14
Jobsite Qualifications – Pre-installation Self Cleaning Hood	14
Start Up Procedure – Self Cleaning Hood	14
Filter Installation Configuration	15
Start Up Checklists	
Self Cleaning Hood Start Up Checklist	16
Component Description	
Self Cleaning Spray Bar	
Self Cleaning Manifold	
3/4" Self Cleaning Manifold Details	
1" Self Cleaning Manifold Details	
1-1/2" Self Cleaning Manifold Details	
Wall Mounted Utility Cabinet Self Cleaning Manifold Details	
Wall Mounted Utility Cabinet 3/4" Self Cleaning Manifold Details	
Wall Mounted Utility Cabinet 1" Self Cleaning Manifold Details	
Wall Mounted Utility Cabinet 1-1/2" Self Cleaning Manifold Details	
Self Cleaning	
Surfactant Tank	
Troubleshooting	
Self Cleaning Hood Troubleshooting Chart	
MAINTENANCE	
General Maintenance	
Every 6 months	
Every 2 Years	
Start-Up and Maintenance Documentation	30

WARRANTY

This equipment is warranted to be free from defects in materials and workmanship, under normal use and service, for a period of 24 months from date of shipment. This warranty shall not apply if:

- 1. The equipment is not installed by a qualified installer per the MANUFACTURER'S installation instructions shipped with the product.
- 2. The equipment is not installed in accordance with federal, state and local codes and regulations.
- 3. The equipment is misused or neglected.
- 4. The equipment is not operated within its published capacity.
- 5. The invoice is not paid within the terms of the sales agreement.

The MANUFACTURER shall not be liable for incidental and consequential losses and damages potentially attributable to malfunctioning equipment. Should any part of the equipment prove to be defective in material or workmanship within the 24 month warranty period, upon examination by the MANUFACTURER, such part will be repaired or replaced by MANUFACTURER at no charge. The BUYER shall pay all labor costs incurred in connection with such repair or replacement. Equipment shall not be returned without MANUFACTURER'S prior authorization and all returned equipment shall be shipped by the BUYER, freight prepaid to a destination determined by the MANUFACTURER.

INSTALLATION

It is imperative that this unit is installed and operated with the designed airflow and electrical supply in accordance with this manual. If there are any questions about any items, please call the service department at **1-866-784-6900** for warranty and technical support issues.

Mechanical System Nomenclature

WARNING: APPLY THE APPROPRIATE WATER PRESSURE AND TEMPERATURE TO ALL FITTINGS TO PREVENT LEAKAGE AND COMPONENT FAILURE

System	Water Connection
W1	1 Hot Water

ATTENTION: SYSTEM MUST BE INSTALLED IN CONDITIONED SPACE BETWEEN 32°F AND 130°F

Ensure there is 36 Inches of service clearance to the front of the panel.

Plumbing Connections for Self Cleaning

Several field plumbing connections are required for proper Self Cleaning hood operation. It is recommended that all plumbing connections be sealed with Teflon tape or pipe thread sealant. Use care not to contaminate the interior surfaces of the water lines when plumbing the unit, as small particulate can clog the orifices of the spray nozzles.

- 1. All incoming plumbing connections are connected via ¾" quickseals at the top of the utility cabinet. See Figures 1 and 2 for details.
- 2. Self Cleaning hoods with the W1 option (Hot Water Wash) require a hot water connection at 140°F to 170°F and a minimum required PSI, per Table 1, to 50 psi operating pressure. If the operating pressure is greater than 50 psi, a water regulator must be connected. Max water static pressure is 125 psi. Typical water flow rate is 0.7 GPM per foot of hood. The spray lasts for a factory setting of 3 minutes every time the fans are switched off.
- 3. If multiple hoods are arranged in an end-to-end or back-to-back arrangement, plumbing connecting the hoods must be piped in the field. The plugged end of the spray bar is used to do this. Remove the plugs on the main hood and the adjacent hood and simply pipe the two together.
- 4. There is also a non-pressurized 1-1/2 inch drain connection that must be piped. This allows water to drain from the hood grease trough. It must be connected to the building grease trap. Hoods 10' in length (or greater) will require 2 drains. 24" tall hoods with 20" filters will require 2 drains. All other hoods will require 1 drain. See Figure 3 for details.
- 5. Once all supply and drain lines are connected, remove one of the nozzles and flush the lines.
- 6. The Ansul fire system duct detection bracket and fusible link are shipped loose to be installed in the exhaust ductwork. The detector must be installed no more than 20 feet from the hood, and installed per the Ansul fire system guidelines.

Warning

All field connections between hoods and drain lines must be run with Steel, Stainless Steel, or Copper pipe. Plastic pipe cannot be used for drains or field connections between hoods, as it could fail and become hazardous.

Piping Loss Calculation for Wall Mount Self Cleaning System

To ensure proper operation of the Self Cleaning System, a minimum operating water pressure rating, see **Table 1**, during spraying must be achieved at the hood nozzles. For this to occur, proper sizing of the water line is required. Use the following steps to calculate the piping minimum size.

- 1. Use the **Minimum Pressure Requirements for Lengths of Hood** chart and find the Self Cleaning minimum PSI required at the hood inlet. Subtract this value from the available PSI at the panel pressure gauge. Maximum panel operating pressure is 50 psi. This will be your maximum allowable pressure drop for field installed pipes between the panel and the hood.
- 2. Most fittings add an equivalent pipe length to the total run. Use the chart below to calculate the equivalent pipe length for installed fittings. If you have multiple fittings of one type, simply multiply the number below by the total number of the fitting and add to the total run length.

Equivalent Pipe Length For Various Pipe Fittings

Pipe Size Inches	45° Elbow	90° Elbow	Tee Thru Run	Tee Thru Branch
3/4"	0.97	2.10	1.40	4.10
1"	1.23	2.60	1.80	5.30
1 ½"	1.90	4.00	2.70	8.00
2"	2.40	5.20	3.50	10.40

- 3. To calculate the total flowing pressure drop between the panel and the hood, take the total equivalent length found in step 2 and add the total linear field installed pipe length. Multiply this number by the value found in the table below, Pressure Drop (PSI) per Equivalent Foot of Waterline. (Gallons per minute is calculated by multiplying the length of the hood by 0.7 gpm) This will be the friction pressure drop between the hood and the panel.
- 4. Add in the pressure drop due to gravity. This must be evaluated to overcome any rise in pipe elevation between the panel and the hood. There is .43 psi/ft of vertical rise of pressure drop.
- 5. Now, compare the maximum allowable pressure drop from step 1 to the calculated pressure drop from step 3. If the calculated pressure drop exceeds the maximum allowable pressure drop, increase the pipe size and recalculate steps 2 and 3. Continue this step until the calculated pressure drop is below the maximum allowable.

Pressure Drop (PSI) per Equivalent Foot of Waterline Pipe Size

Gallons per	Waterline Pipe Size (psi per foot of pipe)			
Minute	3/4"	1"	1 1/2"	2"
5	0.028	0.008	0.001	0.000
10	0.102	0.029	0.004	0.001
15	0.216	0.062	0.008	0.001
20	0.368	0.105	0.014	0.002
25	0.556	0.159	0.022	0.003
30	0.779	0.223	0.030	0.004
35	1.036	0.296	0.040	0.006
40	1.327	0.379	0.052	0.008
45	1.650	0.472	0.064	0.009
50	2.005	0.573	0.078	0.011
55	2.391	0.684	0.093	0.014
60	2.809	0.803	0.110	0.016
65	3.257	0.931	0.127	0.019
70	3.736	1.068	0.146	0.021
75	4.244	1.213	0.166	0.024
80	4.782	1.367	0.187	0.027
85	5.350	1.529	0.209	0.030
90	5.946	1.700	0.232	0.034
95	6.572	1.879	0.256	0.037
100	7.226	2.066	0.282	0.041
105	7.909	2.261	0.309	0.045

Field Pipe Pressure Drop Calculation Example:

Wall mount panel installed with 30 feet of 3/4" linear pipe between panel and hood. (2) 90 degree elbows are installed in the pipe run and the pipe run has a vertical rise of 5 feet. Length of end-to-end hood system is 32 feet.

Hood System = 32 feet. Flow rate = 32 feet * 0.7 gpm = 23 gpm

Pressure required at hood = 37 psi

Pressure at panel gauge = 50 psi

Allowable pressure drop between panel and hoods: 50 psi - 37 psi = 13 psi

Equivalennt length of pipe = 30 + 2 * 2.10 = 34.20 feet

Friction Pressure Drop through pipe = 34.20 * 0.556 = 19.01 psi

Gravitational Pressure = 0.43 psi/ft * 5 feet = 2.15 psi

Total Pressure Drop in Field Pipe between panel and hood = 19.01 psi + 2.15 psi = 21.16 psi

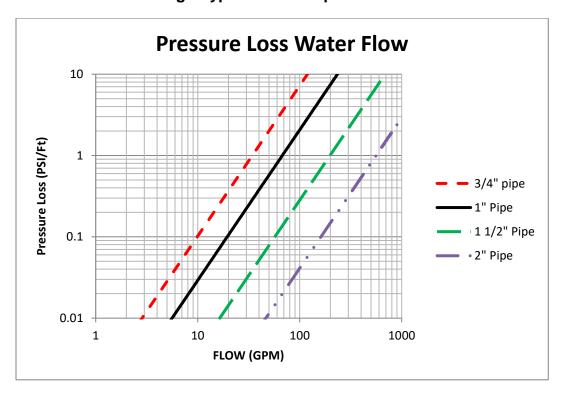
Allowable pressure drop = 13 psi

This system will not work correctly because calculated pressure drop is greater then allowable pressure drop. Pipe size will need to be change to 1inch diameter.

Re-calculate with 1 inch pipe instead of 3/4" pipe:

Equivalennt length of pipe = 30 + 2 * 2.60 = 35.20 feet

Friction Pressure Drop through pipe = 35.20 * 0.159 = 5.59 psi


Gravitational Pressure = 0.43 psi/ft * 5 feet = 2.15 psi

Total Pressure Drop in Field Pipe between panel and hood = 5.59 psi + 2.15 psi = **7.74 psi**

Allowable pressure drop = 13 psi

This system will work correctly because calculated pressure drop is less then allowable pressure drop.

Pressure Loss Through Typical Water Pipe Chart

Minimum Operating Pressure Requirements for Lengths of Hood

Table 1 3/4" Manifold Minimum Operating Pressure Requirements for Length of Hood

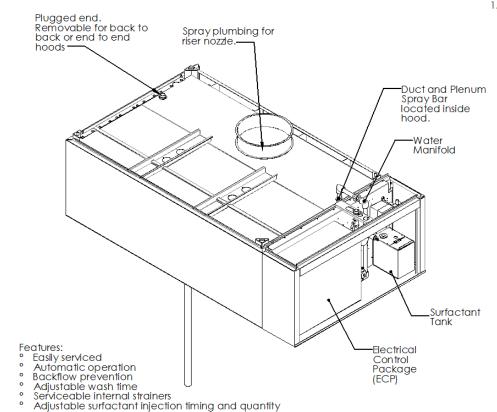
Length of Hood (Ft)	Minimum Inlet Water Pressure for Self Cleaning (PSI)	Self Cleaning Discharge Coefficients (K-Factor)
4	30	0.6
8	30	1.3
12	30	1.9
16	30	2.5
20	31	3.1
24	32	3.7
28	34	4.2
32	37	4.6
36	39	5.0
40	42	5.4
44	46	5.7
48	50	6.0

Table 2
1" Manifold Minimum Operating Pressure Requirements for Length of Hood

Length of Hood (Ft)	Minimum Inlet Water Pressure for Self Cleaning (PSI)	Self Cleaning Discharge Coefficients (K-Factor)
4	30	0.6
8	30	1.3
12	30	1.9
16	30	2.5
20	30	3.1
24	30	3.8
28	31	4.3
32	33	4.8
36	35	5.3
40	42	5.4
44	43	5.9
48	45	6.3

Table 3
1-1/2" Manifold Minimum Operating Pressure Requirements for Length of Hood

Length of Hood (Ft)	Minimum Inlet Water Pressure for Self Cleaning (PSI)	Self Cleaning Discharge Coefficients (K-Factor)
4	30	0.6
8	30	1.3
12	30	1.9
16	30	2.5
20	30	3.1
24	30	3.8
28	30	4.4
32	30	5.0
36	33	5.4
40	35	5.9
44	38	6.2
48	40	6.6


Note: Water pressure may not drop below the minimum required PSI while the hood hot water is operating. Pressure may not rise above 50 PSI when the hood is spraying. If the operating pressure is greater than 50 PSI, a water regulator must be connected.

The chart above is for continuous back to back and/or end to end hood installations. If the pipe connecting any hood contains excessive elbows or complicated paths, additional pressure may be required to overcome this pressure loss. Contact engineering for clarification in these circumstances.

9

Self Cleaning System Overview

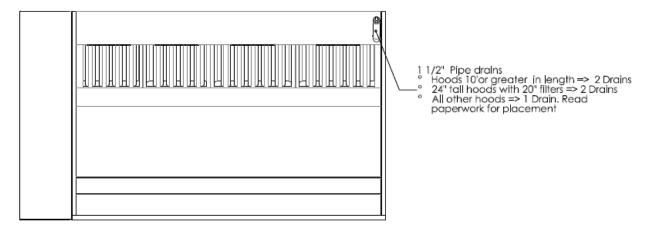
Figure 1

The Fully Integrated Self Cleaning System has the following options.

Hot Water Fully Integrated Self Cleaning System (W1).
The hot water fully integrated self cleaning system uses the basic manifold with the addition of a detergent pump and timers to control the system. When the fan power switch is turned off, the system sprays and injects surfactant into the plenum for cleaning. The length of the wash cycle and surfactant injection are adjustable. It is recommended that the wash time be 3 minutes and detergent injection is 1 second every 1 minute.

Water Pressure = 30 to 70 PSI Operating

Water Pressure = 30 to 70 PSI Operating Water Pressure = 125 PSI Maximum Static Water Temp = 140° to 170° F


, ,,,

Filters must be installed for proper system operation. Filters can be removed once the system is off.

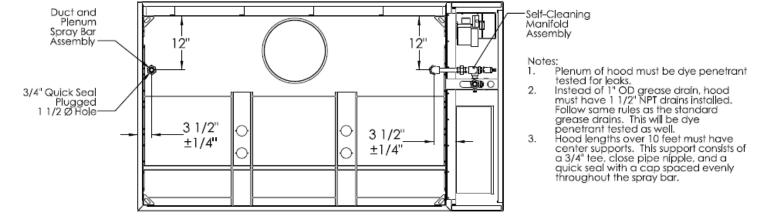
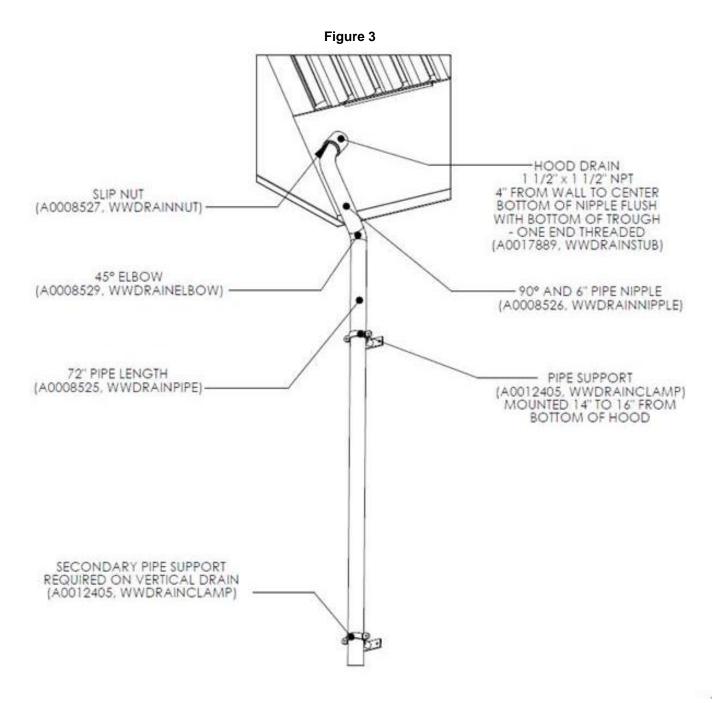

Self Cleaning Hood Top and Bottom View

Figure 2


Bottom View of Hood

Top View of Hood

Drain Assembly

Electrical

Before connecting power to the control, read and understand the entire section of this document. As-built wiring diagrams are furnished with each control by the factory, and are attached either to the door of the unit or provided with the paperwork packet.

Electrical wiring and connections should be done in accordance with local ordinances and the National Electric Code, ANSI/NFPA70. Be sure the voltage and phase of the power supply and the wire amperage capacity is in accordance with the unit nameplate.

ATTENTION: LOW-VOLTAGE DC OR SIGNALING WIRE SHOULD BE ROUTED IN SEPARATE CONDUIT FROM ALL AC SOURCES.

- 1. Always **disconnect power** before working on or near this equipment. Lock and tag the disconnect switch or breaker to prevent accidental power up.
- There are multiple electrical connections required for this control. 120VAC should be wired to terminals H1 and N1. If the hood is equipped with a separate light circuit, 120VAC should power it per the as-built schematic. Fan wiring connections should be made per the schematic. H1 and N1 should not be connected to a shunt trip breaker.
- 3. Make certain that the power source is compatible with the requirements of your equipment. The system wiring schematic identifies the **proper phase and voltage** of the equipment.
- Before connecting control to power source, verify power line wiring is de-energized.
- 5. Secure the power cable to prevent contact with sharp objects.
- 6. Do not kink power cable and never allow the cable to come in contact with oil, grease, hot surfaces or chemicals.
- 7. The hood lights wiring will also need to be wired to terminals "B" and "W". Verify connections on wiring schematic.
- 8. Before powering up the system, make sure that the interior of the control is free of loose debris or shipping materials.
- 9. If 3 phase motors are spinning in the incorrect direction, switch any two wires on the output of the motor starter. Rewire single phase motors per the motor schematic to *change direction*.
- 10. If any of the original internal wire supplied with the system must be replaced, it must be replaced with type THHN wire or equivalent.

WARNING!!

Disconnect power before installing or servicing control. High voltage electrical input is needed for this equipment. A qualified electrician should perform this work.

Copper Wire Ampacity

Wire Size AWG	Maximum Amps
14	15
12	20
10	30
8	50
6	65
4	85

OPERATION

Prior to starting up or operating the system, check all fasteners for tightness. Ensure that the wiring is installed properly and that all nozzles and panels are installed.

The Self Cleaning hood is designed to use hot water to wash the hood plenum and immediate duct section every time the fan switch button is pressed on the main control panel HMI. When the switching action occurs, hot water sprays along the entire length of the hood and towards the back of the hood for a factory setting of 3 minutes. During this time, surfactant is injected into the water stream for a duration of 1 second for each minute of wash time. Once the wash cycle is complete, water stops spraying and the hood filters are to be removed and cleaned.

Start Up

Special Tools Required

- AC Voltage Meter
- Standard Hand Tools

Surfactant (Part Number WWDETER for 4 Gallons, WWDETER-1G for 1 Gallon)

Jobsite Qualifications - Pre-installation Self Cleaning Hood

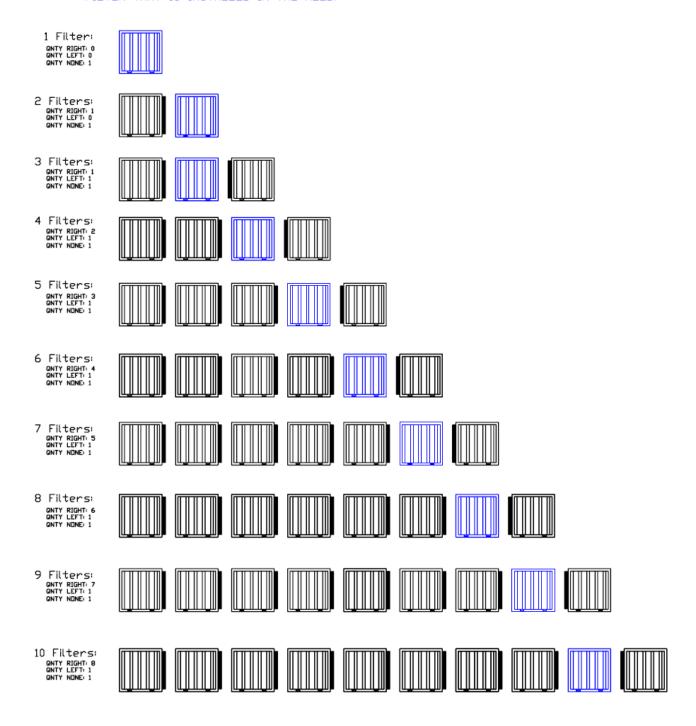
- 1. Verify the proper amount of water pressure and flowrate is available for Self Cleaning. Should the operating and static pressures exceed our maximum listing, correctly identify and size a pressure reducing valve.
- 2. Determine the pressure drop from the connection at the source to the connection at the Self Cleaning manifold inlet.
- 3. Verify the location of the manifold, and if a backflow preventer is required.
- 4. Verify hot water minimum temperature rating of 140°F will be provided.

Start Up Procedure - Self Cleaning Hood

- 1. Check all nozzles to make sure they are installed and tight.
- 2. Install all hood filters per the filter installation configuration chart below. There are drip blanks secured to the filters to prevent water from exiting the hood between the filters.
- 3. Open all water valves to the hood.
- 4. Fill surfactant tank with surfactant. The "Add Surfactant" light should not be on. Prime the surfactant pump with the push-button on the face of the electrical control package.
- 5. There are 2 timers that control the spray and the surfactant injection. The wash timer is set to 3 minutes from the factory. The surfactant timer is factory set for 1 second of injection during each minute of wash time. The injection occurs at the start of each minute. The timer settings should be verified. (See section "Self Cleaning Timers

for information)

- 6. Turn the hood fan ON by pressing the HMI fan button. Fans should operate. If they do not, check wiring. If the hood has the cold water mist option, cold water should begin to spray.
- 7. To operate the wash cycle, simply press the fan button to turn the fans off. The wash cycle energizes automatically and will remain on for the duration of the wash timer setting.
- 8. Verify that surfactant is being injected properly into the water stream.
- 9. Verify the pressure and temperature of the water via the pressure/temperature gauge. See Figure 4 for a picture of the gauge. Self Cleaning pressure should be between 30 and 50 PSI operating pressure, and Cold Mist operating pressure should be between 10 and 20 PSI.
- 10. Check all manifold pipe connections to ensure there are no water leaks.
- 11. Check all filters to make sure that no water is leaking back through the filters.
- 12. Verify that the hood grease trough is draining properly and there are no clogs in the drain.


Figure 4

Filter Installation Configuration

The hood filters have drip blanks attached to them to prevent water leakage through the filters. The chart below shows the location of the drip blanks and the last filter to be installed into the hood. See Figure 5 below for details.

Figure 5

*NOTE: BLUE FILTERS DESIGNATE THE LAST
FILTER THAT IS INSTALLED IN THE HOOD.

Start Up Checklists

Self Cleaning Hood Start Up Checklist

Action	Completed (Yes/No)	Result
Check All Nozzles for Tightness		
Open all Valves to Hood		
Fill Surfactant Tank		
Prime Surfactant Pump		
Set All Timers		
Check Fan Operation		
Operate Wash Cycle		
Verify Surfactant Pump Operation		
Verify Operating Hot Water Pressure (Table 1)		
Verify Operating Cold Water Pressure (10-20 PSI)		
Verify Max Water Static Pressure (125 PSI)		
Verify Hot Water Temperature		
Check For Leaks in Manifold		
Check For Leaks through Filters		
Verify that Water is Draining Properly		

Component Description

The following section lists the major controls and components used in the Self Cleaning hood.

Self Cleaning Spray Bar

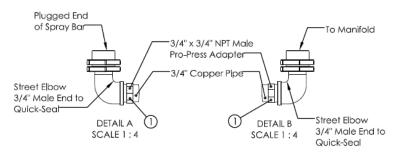
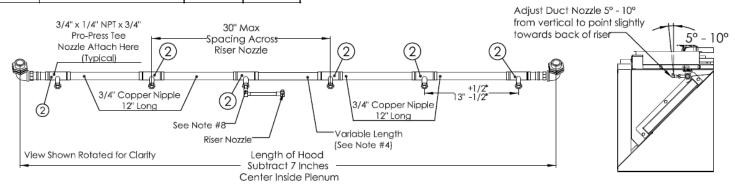

The Self Cleaning hood contains a spray bar that extends the entire length of the hood immediately behind the filters in the hood. The bar is ¾" copper pipe with copper/brass Pro-press fittings with nozzles that spray directly toward the back of the hood. The same spray bar is used in hot water. Water enters the spray bar via a ¾" quick seal. The other end of the spray bar is plugged. If hoods are installed back-to-back or end-to-end, the plugged end of the spray bar can be un-plugged and connected to the next spray bar. See Figure 6 below for details.

Figure 6

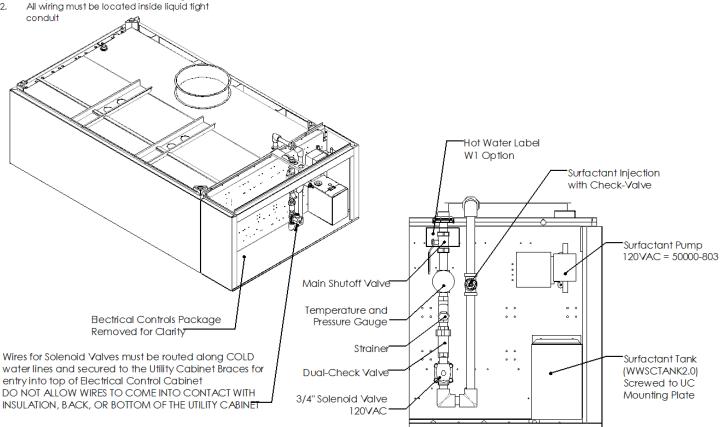

Notes:

- 1. All pipe will be Copper, Pipe fittings will be Brass/Copper Pro-Press.
- Sections of pipe and tees can be pre-assembled for use. The majority of the length will use these parts.
- Ends will be made using a Street elbow inside a quick-seal. See Detail A and B.
- The Variable length section of pipe will be used to complete the spray assembly.
- On hoods 10' and longer, a tee will be installed at the center of the spray bar for support. This will be a 3/4" x 3/4" NPT x 3/4" Pro-Press Tee with a plugged quick-seal. If this interferes with riser, move supports to both sides of riser.
- Riser plumbing will be 1/4" NPT Brass. The placement of the elbow is dependent on the riser location. The nozzle needs be centered, both vertically and horizontally, within the riser. Riser nozzle must follow table to right. Maintain 13" nozzle spacing.
- When riser nozzle is located directly under center of riser on spray bar, main elbow must point upwards.
- 8. Omit plenum nozzle on riser nozzle branch.

Pro-Press Parts for Plenum Spray Bar			
ttem Description Part Number A/X			
1	3/4" x 3/4" NPT Male Pro-Press Adapter	79230	A0028284
2	3/4" x 1/4" NPT x 3/4" Pro-Press Tee	79585	A0028285
Not Shown	3/4" x 3/4" NPT x 3/4" Pro-Press Tee	79595	A0028286

Nozzles for Hot Water Wash (W1)				
Description	A/X	Flow Rate		
Riser Nozzle	1/4TT+TG-4.3W	A0025166	.70 GPM @ 30 PSI	
Spray Bar Nozzle	1/4TT+TG-4.3W	A0025166	.70 GPM @ 30 PSI	

Water Manifolds


The Self Cleaning hot water wash (W1) water manifold has one hot water connection. The water wash manifold can be installed in the hood utility cabinet mounted on the hood, or when the utility cabinet is mounted on the wall.

Self Cleaning Manifold

Figure 7

Notes:

All manifold fittings and pipe will be Brass. Drain components are Chrome-plated 17 ga. Brass

3/4" Self Cleaning Manifold Details

Figure 8

Manifold Parts

Description

3/4" Close Brass Nipple

Part #

24" Tall Hoods 30" Tall Hoods

4568K191

Quantity

Used

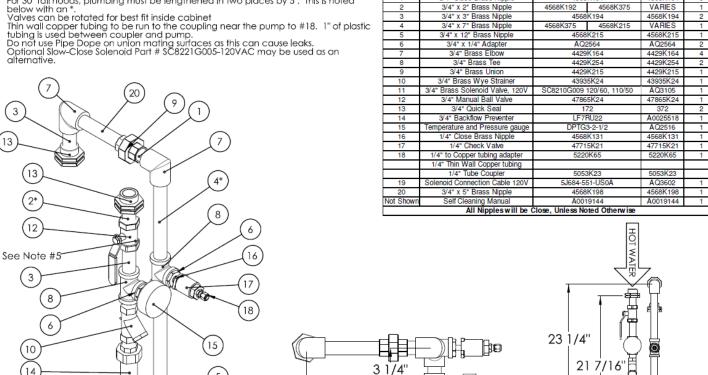
Macola #

Notes:

14

19

See Note #8


- 1. 2. 3. 4.

- 5. 6.

 \square

0

7

9 7/16"

1" Self Cleaning Manifold Details

Figure 9

Notes:

- 1. 2. 3. 4.

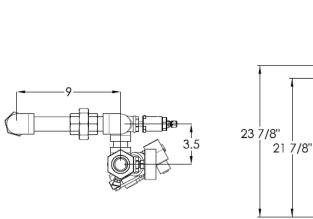
- 5. 6.

- All fittings and pipe will be Brass. Drain components are Chrome-plated 17 ga. Brass. Length and width of manifold must match measurements listed on this page. All pipe nipples are close unless otherwise noted. For 30° tall noods, plumbing must be lengthened in two places by 3°. This is noted below with an *.

 Valves and Gauges can be rotated for best fit inside cabinet, gauge faces must be visible Thin wall copper tubing to be run to the coupling near the pump to #20. 1° of plastic tubing is used between coupler and pump.

 Do not use Pipe Dope on union mating surfaces as this can cause leaks.

 Optional Slow-Close Solenoid Part # SC8221G007-120VAC may be used as an alternative. 1" Close Brass Nipple
 1" x 4" Brass Nipple
 1" x 7" Brass Nipple
 1" x 14" Brass Nipple 4568K226 VARIES 76 45 4512K751 4429K165 4429K238 1" Brass Elbow 1" x 3/4" x 1" Brass Tee 3/4" Brass Reducing Coupli A0014022 A0024232 A0026276 1" Brass Houting Coopin


 1" Brass Wye Strainer

 1" Brass Solenoid Valve, 120V

 1" Manual Ball Valve

 3/4" To 1/4" Brass Bushing

 1" Quick Seal BR106A A0007774 SC8210G004-120VAC MBV-1.0NN (EC) 11 A0017119 10406 AQ2564 12 13 14 AQ2564 213 A0003378 3/4" Quick Seal 1" Backflow Preventer Temperature and Pressure gauge (6) 15 16 17 372 A0026338 AQ2516 172 LF7RU2-8 1/4" Close Brass Nippl 1/4" Check Valve 18 4568K131 4568K131 19 15 1/4" to Copper tubing adapter 1/4" Thin Wall Copper tubing 20 5220K65 5220K65 (14) 1/4" Tube Coupler Solenoid Connection Cable 120V Self Cleaning Manual 5053K23 5J684-551-US0A A0019144 5053K23 AQ3602 A0019144 7 13 (2* Not Shown se, Unless Noted Otherwise

Manifold Parts

24" Tall Hoods 30" Tall Hoods

HOT WATER

Description

1" Close Brass Nipple

#

Quantity Used

Macola #

AQ2522

VARIES

1-1/2" Self Cleaning Manifold Details

Figure 10

#

Description

1-1/2" Close Brass Nipple 1-1/2" x 10" Brass Nipple 1-1/2" x 14" Brass Nipple 1-1/2" Brass Elbow Part #

4568K274 4568K771 AQ2502

25 3/4"

Macola #

4568K771 A0006996

A0024232

43935K27 A0017120 A0027373

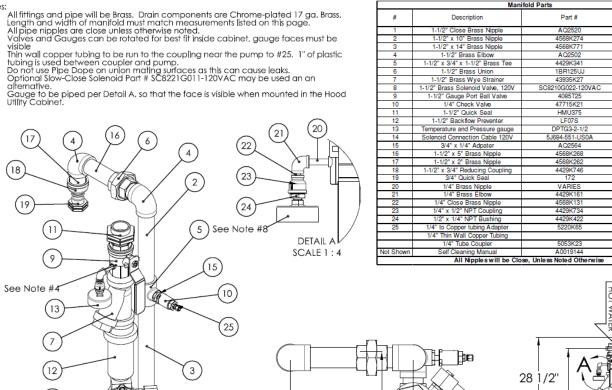
47715K21

376 A0027372 AQ2516

AQ3602 AQ2564 4568K268

4429K734 4429K422

A0019144

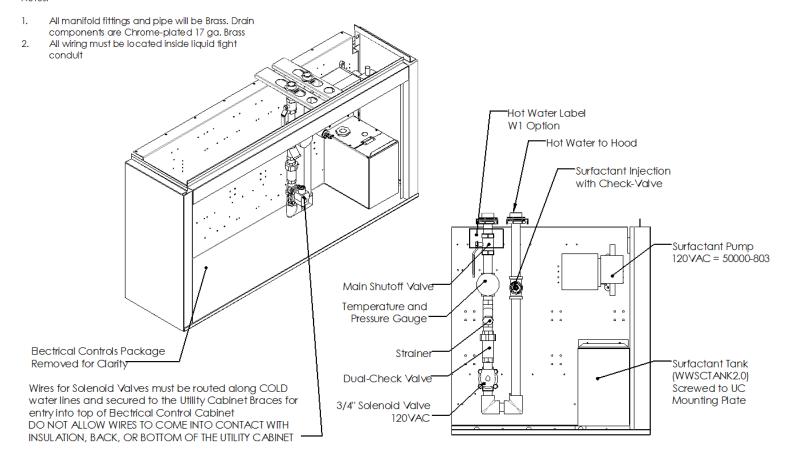

Used

Notes:

- 2. 3. 4.

See Note #7

- 5.
- 6. 7.
- 8.


4 9/16"

10 5/8"

Wall Mounted Utility Cabinet Self Cleaning Manifold Details

Figure 11

Notes:

Wall Mounted Utility Cabinet 3/4" Self Cleaning Manifold Details

Figure 12

Notes:

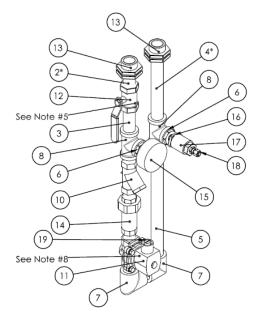
- 1. 2. 3. 4.

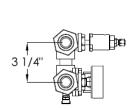
- All fittings and pipe will be Brass. Drain components are Chrome-plated 17 ga. Brass. Length and width of manifold must match measurements listed on this page.

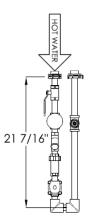
 All pipe nipples are close unless otherwise noted.

 For 30" tall hoods, plumbing must be lengthened in two places by 5". This is noted below with an *.

 Valves can be rotated for best fit inside cabinet


 Thin wall copper tubing to be run to the coupling near the pump to #18. 1" of plastic tubing is used between coupler and pump.


 Do not use Pipe Dope on union mating surfaces as this can cause leaks.


 Optional Slow-Close Solenoid Part # SC8221G005-120VAC may be used as an alternative.

#	Description	Part #		Macola#	Quantity
	•	24" Tall Hoods	30" Tall Hoods		Used
1	3/4" Close Brass Nipple	4568	K191	4568K191	5
2	3/4" x 2" Brass Nipple	4568K192	4568K375	VARIES	1
3	3/4" x 3" Brass Nipple	4568	K194	4568K194	1
4	3/4" x 7" Brass Nipple	4568K375	4568K215	VARIES	1
5	3/4" x 12" Brass Nipple	4568	K215	4568K215	1
6	3/4" x 1/4" Adapter	AQ	2564	AQ2564	2
7	3/4" Brass Elbow	4429	K164	4429K164	2
8	3/4" Brass Tee	4429	K254	4429K254	2
9	3/4" Brass Union	4429	K215	4429K215	1
10	3/4" Brass Wye Strainer	4393	5K24	43935K24	1
11	3/4" Brass Solenoid Valve, 120V	SC8210G009	120/60, 110/50	AQ3105	1
12	3/4" Manual Ball Valve	4786	5K24	47865K24	1
13	3/4" Quick Seal	17	72	372	1
14	3/4" Backflow Preventer	LF7I	RU22	A0025518	- 1
15	Temperature and Pressure gauge	DPTG	3-2-1/2	AQ2516	- 1
16	1/4" Close Brass Nipple	4568	K131	4568K131	1
17	1/4" Check Valve	4771	5K21	47715K21	- 1
18	1/4" to Copper tubing adapter	5220	K65	5220K65	1
	1/4" Thin Wall Copper tubing				
	1/4" Tube Coupler	5050	3K23	5053K23	
19	Solenoid Connection Cable 120V	5J684-5	51-US0A	AQ3602	1
Not Shown	Self Cleaning Manual	A001	19144	A0019144	1
	All Nipples will be	Close, Unless No	nted Otherwise		

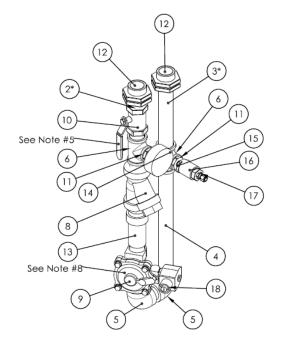
Manifold Parts

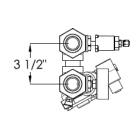
Wall Mounted Utility Cabinet 1" Self Cleaning Manifold Details

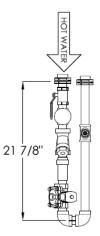
Figure 13

Notes:

- 1. 2. 3. 4.


- 5.
- All fittings and pipe will be Brass. Drain components are Chrome-plated 17 ga. Brass. Length and width of manifold must match measurements listed on this page. All pipe nipples are close unless otherwise noted. For 30" tall hoods, plumbing must be lengthened in two places by 3". This is noted below with an *. Valves and Gauges can be rotated for best fit inside cabinet, gauge faces must be visible

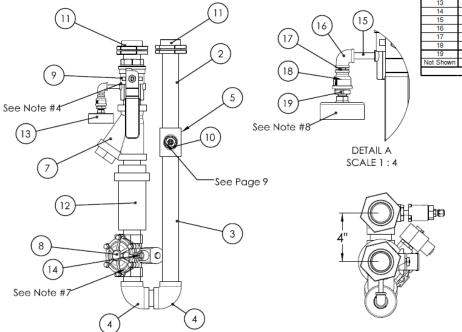

 Thin wall copper tubing to be run to the coupling near the pump to #17. 1" of plastic tubing is used between coupler and pump.

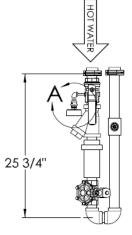

 Do not use Pipe Dope on union mating surfaces as this can cause leaks.

 Optional Slow-Close Solenoid Part # SC8221G007-120VAC may be used as an alternative. 6.
- 7. 8.

#	Description	Part #		Macola #	Quantity Used
1	1" Close Brass Nipple	AQ2522		AQ2522	8
2	1" Close Brass Nipple	AQ2522	4568K336	VARIES	1
3	1" x 7" Brass Nipple	4568K376	4568K234	VARIES	1
4	1" x 14" Brass Nipple	4512	K751	4512K751	1
5	1" Brass Elbow	4429K165		A0014022	4
6	1" x 3/4" x 1" Brass Tee	4429K238		A0024232	2
7	1" Brass Union	BR106A		A0007774	1
8	1" Brass Wye Strainer	43935K25		A0026974	1
9	1" Brass Solenoid Valve, 120V	SC8210G004-120VAC		A0017119	1
10	1" Manual Ball Valve	MBV-1.0NN (EC)		10406	- 1
11	3/4" To 1/4" Brass Bushing	AQ2564		AQ2564	2
12	1" Quick Seal	213		A0003378	1
13	1" Backflow Preventer	LF7RU2-2		A0026338	1
14	Temperature and Pressure gauge	DPTG3-2-1/2		AQ2516	1
15	1/4" Close Brass Nipple	4568	K131	4568K131	1
16	1/4" Check Valve	4771	15K21	47715K21	1
17	1/4" to Copper tubing adapter	522	0K65	5220K65	1
	1/4" Thin Wall Copper tubing				1
	1/4" Tube Coupler	505	3K23	5053K23	1
18	Solenoid Connection Cable 120V	5J684-5	51-US0A	AQ3602	1
Not Shown	Self Cleaning Manual	A00	19144	A0019144	1
	All Nipples will be Cl	ose, Unless Not	ed Otherwise		•

Wall Mounted Utility Cabinet 1-1/2" Self Cleaning Manifold Details

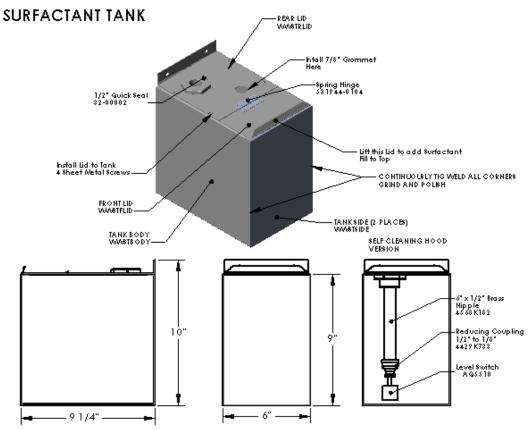

Figure 14


Notes:

- 1. 2. 3. 4.
- :
 All fittings and pipe will be Brass. Drain components are Chrome-plated 17 ga. Brass. Length and width of manifold must match measurements listed on this page.
 All pipe nipples are close unless otherwise noted.
 Valves and Gauges can be rotated for best fit inside cabinet, gauge faces must be visible.
 This wall copper tubing to be sun to the coupling page the pump to #10 1.1" of plattice.
- visible
 Thin wall copper tubing to be run to the coupling near the pump to #10. 1" of plastic tubing is used between coupler and pump.
 Do not use Pipe Dope on union mating surfaces as this can cause leaks.
 Optional Slow-Close Solenoid Part # SC8221G011-120VAC may be used an an alternative.
 Gauge to be piped per Detail A, so that the face is visible when mounted in the Hood Utility Cabinet. 5.
- 6. 7.
- 8.

Manifold Parts

Self Cleaning


- 1. During the wash cycle, water will be sprayed in the plenum and duct and surfactant will be injected at a set frequency. The wash cycle will stop when the wash timer expires or when the Wash button is pressed again.
- 2. The wash timer is factory set to 3 minutes and is adjustable through the Configuration Menu. The surfactant is injected for 1 second at the start of each minute of Wash. This setting is not adjustable. If equipped with CORE Fire Protection, the wash timer is not configurable through the ECPM03 control board. Refer to the CORE Owner's Manual for further information.
- 3. Hood filters MUST remain in place during the wash cycle.
- 4. The wash cycle can be initiated in several ways:
 - a. Manually, when the WASH button is pressed on the HMI.
 - b. Automatically, if the following conditions are met:
 - Fans will need to go out of modulation mode either with the FANS button being pressed or by the duct temperature cooling down and hysteresis value and timer are met.
 - The fans will need to have effectively run cumulatively for a period of time longer than the "Wash Min Fan Runtime" value configured under "Misc Options". Preparation Time mode and Cool Down mode fan time do not count towards runtime. The runtime is reset to zero when the wash cycle is run.
 - The amount of time elapsed since the previous wash cycle is greater than the "Wash Min Interval time" value configured under "Misc Options". That elapsed time is reset to zero when the wash cycle is run.
 - c. If a Building Management System (BMS) is remotely controlling the fans through the external input terminal IO1, when the Fans are turned ON and then OFF through the IO1 terminal, granted that the fans are not maintained on by the duct temperature sensors or the fan button.
 - d. Through a digital Building Management System. Refer to the Building Management Owner's Manual for more information.
- If the surfactant level is too low, an alarm will be triggered on the HMI. If the wash cycle is initiated while this alarm is active, water will be sprayed but no surfactant will be injected. Refill Surfactant as soon as possible

Surfactant Tank

The surfactant tank contains a liquid level control which energizes when the tank is completely empty. In the event that the low level sensor is activated, an "Add Surfactant" light will illuminate on the control panel. To reset light, simply fill the surfactant tank with surfactant. Figure 9 below shows tank details.

NOTE: SC-5 surfactant from 20/10 Products Incorporated must be used.

Figure 15

ALL PIPING ASSEMBED WIHT LIQUID PIPESEALANT

Troubleshooting

The following table lists causes and corrective actions for possible problems with Self Cleaning hoods. Review this list prior to consulting manufacturer.

Self Cleaning Hood Troubleshooting Chart

Problem	Potential Cause	Corrective Action	
Plenum not being cleaned	No Water Pressure	Verify Hot Water Pressure >30 PSI	
		Open Manual Valve if closed	
	Clogged nozzles	Clean or replace nozzles	
	Timer Settings improperly set	Wash timer should be set for	
		approximately 3 minutes	
	No water pressure	Turn main building water valve on	
	Nozzle spray pattern incorrect	Nozzles must be pointed toward	
		back of plenum	
	No Surfactant	Add Surfactant	
Leaking Manifold Pipes	Pipes not tight or sealed	Reseal and tighten pipes	
Water Leaking from Vacuum	Riser nozzle installed too high	Verify that vacuum breaker is	
Breaker		installed higher than all downstream	
		piping components	
Add Surfactant Light On	Low Surfactant Level	Add Surfactant	
Water leaks out of Filters	Filters have gaps between them	Add Filter Drip Blanks or reorient	
		filters	
Water Overflows Grease	Clogged Drain	Clean Drain or grease trap	
Trough	Wrong Filters Installed	Install Proper Filters per	
		Manufacturer	
	Water Pressure Too High	Water Pressure should be 50 PSI	
		max	
	Wash Timer Set Too Long	Reduce Wash Time	
	Nozzles are Loose	Tighten Nozzles	
	Filters are Clogged with Grease	Clean Filters	

MAINTENANCE

To guarantee trouble free operation of this system, the manufacturer suggests following these guidelines. Most problems associated with unit failures are directly related to poor service and maintenance. Record any maintenance or service performed on this equipment in the documentation section located at the end of this manual.

General Maintenance

- 1. Hood filters must be maintained on a daily basis to ensure proper airflow and grease extraction.
- 2. All water connections must be verified for tightness and leak-free operation.
- 3. The "Add Surfactant" indicating light will illuminate when the surfactant tank is empty. Surfactant must be added immediately to guarantee proper cleaning of the hood plenum and duct connection.

Every 6 months

- 1. Clean all duct sensors in hood duct connections (if equipped).
- 2. Check all nozzles for proper and evenly distributed water flow. If nozzles are clogged, clean or replace.
- 3. Check drain(s) on hood to verify there is no blockage. Improper drainage could cause hood leaks or water to back up into trough and overflow onto appliances.
- 4. Inspect hood plenum and wipe down any areas not being cleaned by the self-cleaning system. There may be an area where the water spray does not directly contact the metal.
- 5. Inspect the surfactant pump for proper operation and ensure liquid level sensor in surfactant tank is operational. Test by manually lowering the sensor to see if the "Add Surfactant" light illuminates.
- 6. Fill surfactant tank with surfactant.
- 7. The main line strainer in the manifold must be cleaned.
- 8. Verify that system has proper water pressure and temperature per the labels on the unit.

Every 2 Years

Inspect condition of all wires and plumbing. Plumbing should be free of corrosion and wire insulation must be in good condition.

Start-Up and Maintenance Documentation

START-UP AND MEASUREMENTS SHOULD BE PERFORMED AFTER THE SYSTEM HAS BEEN INSTALLED (Warranty will be void without completion of this form)

Job Information

oob iiiioiiiiatioii	
Job Name	
Address	
City	
State	
Zip	
Phone Number	
Fax Number	
Contact	
Purchase Date	

Service Company	
Address	
City	
State	
Zip	
Phone Number	
Fax Number	
Contact	
Start-Up Date	

Self Cleaning Hood Information

Refer to the start-up procedure in this manual to complete this section.

Name Plate and Unit Information	
Hood Model Number	
Serial Number	
Volts	
Hertz	
Phase	

piete tris section.	
Field Measured Information	
Input Voltage	
Check All Nozzles for Tightness	
Open all Valves to Hood	
Fill Surfactant Tank	
Set All Timers	
Check Fan Operation	
Operate Wash Cycle	
Verify Surfactant Pump Operation	
Verify Operating Hot Water Pressure (Table 1)	
Verify Operating Cold Water Pressure (10-20 PSI)	
Verify Max Water Static Pressure (125 PSI)	
Verify Water Temperature	
Check For Leaks in Manifold	
Check For Leaks through Filters	
Verify that Water is Draining Properly	

Maintenance Record

Date	Service Performed

Factory Service Department

Phone: 1-866-784-6900 Fax: 1-919-554-9374